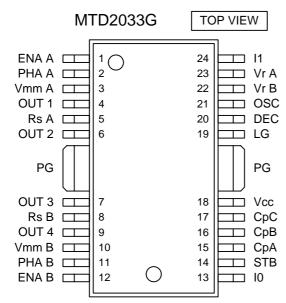


MTD2033G

DMOS Dual Full-bridge PWM Stepper Motor Driver

Features

Dual full-bridge for a bipolar stepper motor
Output current 1.5A, Output voltage 40V
Constant current control (Fixed frequency PWM control)
2-bit digital current selection
Stand-by function
Thermal shutdown with hysteresis
Under voltage lock out function
Surface mount package with heat sink(HSOP24)



Absolute maximum ratings / Ta=25

Parameter	Symbol	Rating	Unit
Load supply	Vmm	40	V
Output current	I _{OUT}	1.5	Α
Logic supply	Vcc	0 ~ 7	V
Logic input	V_{LOGIC}	0 ~ Vcc	V
Power dissipation *1	P_{D}	2.1	W
Storage temperature range	Tstg	-40 ~ 150	
Maximum Junction temperature	Tj	150	

^{*1:50.8} x 50.8 x 1mm3 Glass Epoxy Board(FR4),200mm2 Cupper Pattern

Pin Assignment

Electrical Characteristics

Ta=25 , Vcc=5V , Vmm=24V unless otherwise specified

						•
Parameter	Symbol	Condition	MIN	TYP	MAX	Unit
Output stage						
Load supply current (All circuit OFF)	Imm(OFF)	V _{ENA} =all 5V or V _{I0} =V _{I1} =5V	-	11	20	mA
Load supply current (Stand-by)	Imm(STB)	Vmm=35V, V _{STB} =0V	-	-	100	μΑ
Source driver ON resistance	R _{on} H	lout=-0.8A	-	0.5	0.7	
Sink driver ON resistance	R _{on} L	lout=0.8A	-	0.5	0.7	
Upper MOSFET leakage current	IrH	Vmm=35V, V _{OUT} =0V	-	-	100	μА
Lower MOSFET leakage current	IrL	V_{OUT} =35V, V_{RS} =0V	-	-	100	μΑ
Upper MOSFET reverse voltage	V _F H	I _F =0.8A	-	1.2	1.4	V
Lower MOSFET reverse voltage	V _F L	I _F =0.8A	-	1.2	1.4	V
VcpA under voltage lock out threshold	VcpAUVLC	-	Vmm+3	Vmm+4	Vmm+6	V
LOgic stage						
Logic supply current (All circuit ON)	Icc(ON)	-	-	5	10	mA
Logic supply current (All circuit OFF)	Icc(OFF)	V _{ENA} =all 5V or V _{I0} =V _{I1} =5V	-	5	10	mA
Logic supply current (Stand-by)	Icc(STB)	V _{STB} =0V	-	-	6	mA
Vcc under voltage lock out threshold	VccUVLO	-	3.6	3.8	4.0	V
Logic "H" input voltage	$V_{LOGIC}H$	-	2.0	-	Vcc	V
Logic "L" input voltage	V _{LOGIC} L	-	GND	-	0.7	V
PHA/ENA/I0/I1/STB "H" input current	I _{IN} H	V _{IN} =3.3 or 5V	-	-	10	μΑ
PHA/ENA/I0/I1/STB "L" input current	I _{IN} L	V _{IN} =0V	-	-20	-50	μА
DEC "H" input voltage	$V_{DEC}H$	-	2.0	-	Vcc	V
DEC "L" input voltage	V _{DEC} L	-	GND	-	0.7	V
DEC "H" input current	I _{DEC} H	V _{DEC} =3.3 or 5V	-	50	200	μΑ
DEC "L" input current	I _{DEC} L	V _{DEC} =0V	-	-	-10	μΑ
OSC "H" input voltage	V _{osc} H	-	2.0	-	Vcc	V
OSC "L" input voltage	V _{osc} L	-	GND	-	0.7	V
OSC "H" input current	I _{osc} H	V _{OSC} =3.3 or 5V	-	-	10	μА
OSC "L" input current	I _{osc} L	V _{OSC} =0V	-	-20	-50	μΑ
Vr "H" input current	IrefH	Vr=5V	-	-	10	μΑ
Vr "L" input current	IrefL	Vr=0V	-	-1	-10	μΑ
Comparator Threshold (100%)	Vs1	V ₁₀ ="L", V ₁₁ ="L"	95	100	105	%
Comparator Threshold (70%)	Vs2	V ₁₀ ="H", V ₁₁ ="L"	64	70	76	%
Comparator Threshold (40%)	Vs3	V ₁₀ ="L", V ₁₁ ="H"	36	40	44	%
Comparator blanking tim	tb	-	1	2	3	μs
CpA Charging tim *1	Tchg	Cp1=0.47 μ F、Cp2=0.022 μ F	-	-	2	ms
Thermal shutdown temperature *2	T _{TSD}	-	150	170	-	_

^{*1:}When Vcpa is higher than Vmm+6V, outputs can be turned on.

Be sure to wait before moter drive so long than Tchg, when logic power supply powered on or Stand-By release.

Thermal resistance

Symbol	Rating	Unit
ja *3	58	/W

^{*3 :} $50.8 \times 50.8 \times 1$ mm³ Glass Epoxy Board(FR4),200mm² Cupper Pattern

^{*2:}Shutdown tempereture is assured by design.

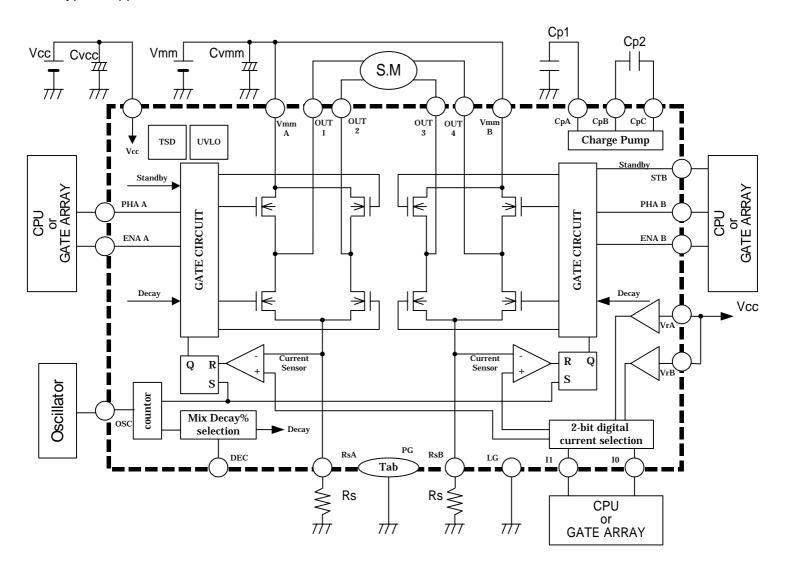
Recommended operation conditions

Parameter	Symbol	Recommendation	Unit
Junction temperature	Tj	-25 ~ 120	
Logic supply	Vcc	4.75 ~ 5.50	V
Load supply	Vmm	15 ~ 35	V
Reference voltage	Vr	0~6	V
OSC frequency	f osc	16 ~ 150	kHz

Truth table

I0 and I1	ENA A or B	PHA A or B	OUT 1 or 4	OUT 2 or 3
L	L	Н	Н	L
L	L	L	L	Н
×	Н	×	OFF	OFF
Н	×	×	OFF	OFF

x:don't care


10	I1	Current Level (%)
L	L	100
Н	L	70
L	Н	40
Н	Н	0

STB	Mode
H or OPEN	ACTIVE
L	Stand-By

DEC	Current Decay Mode	
Н	Mix Decay	
L or OPEN	Slow Decay	

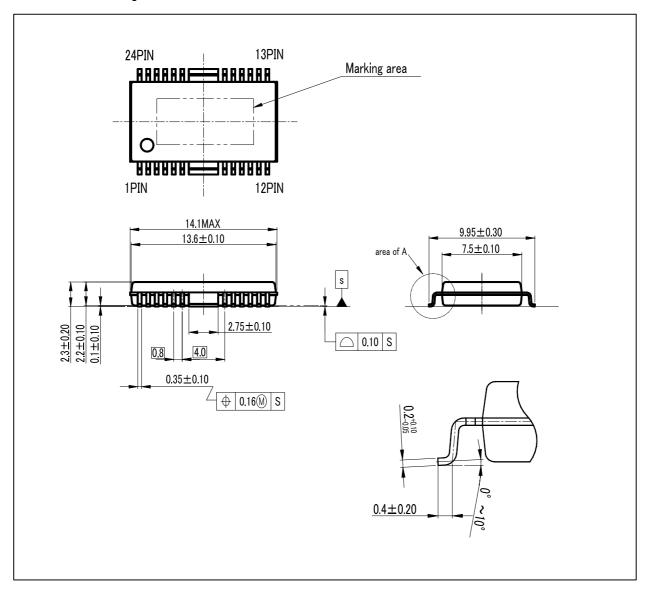
Typical Application

Constant chopping current level

Ichop =
$$\frac{\text{Vref}}{10\text{Rs}}$$

Chopping frequency

fchop = fosc


Recommended component values

Symbol	Recommended value	Unit
Cp1	0.47	μF
Cp2	0.022	μF
Cvmm *1	47	μF
Cvcc	1	μF

^{*1:} It recommend the electrolytic capacitor for the noise absorption connect near IC to Load supply.

Outline Drawing

(Unit: mm)

Although we are constantly making every effort to improve the quality and reliability of our products, there nevertheless remains a certain probability that the semiconductor products may occasionally fail or malfunction. Please take careful precautions against product failures or malfunctions to avoid any injuries, fire accidents or social loss by implementing safety designs such as redundancy designs, designs for fire spread prevention, and designs for preventing malfunctions.

A Our semiconductor products listed in this document are not designed or manufactured to be used in devices or systems requiring extremely high levels of quality and reliability, or the failure or malfunction of which may directly threaten human lives or cause injury. In the cases where the products are to be used in devices or systems for special applications or devices or systems for specialized applications shown below, always make sure to consult us in advance.

Special Applications

Transportation devices (automotive, marine, etc.), communication devices for core network, traffic signal devices, fire prevention/anticrime devices, various safety devices, medical devices, etc.

Specialized Applications

Nuclear power control systems, aircraft and aerospace devices, submarine relay devices, and systems for preserving life, etc.

Even if it is not for a special or specialized application, when IC products are to be used for devices or systems that are desired to last for a long period under continuous operation, please make sure to consult our sales representative in advance.

We reserve the right to make any changes to the contents of this manual without prior notice in accordance with modifications to IC products. Details of specifications should be exchanged at the adoption of the IC products.

All information included in this manual is believed to be accurate and reliable. However, our company takes no responsibility for any injury or damage incurred when using the IC products as described in this manual. Neither do we take any responsibility for issues arising from infringement of patent or other rights caused by using this manual.

The provision of this manual does not guarantee the right to use any third party's patent or other rights, or grant permission to use the patent or other rights of our company.

No part of this manual may be reproduced or copied without the specific written consent of Shindengen Electric Mfg. Co., Ltd.